東京工業大学は2024年3月14日、次世代の太陽電池として期待されているシリコンヘテロ接合(SHJ)太陽電池用の水素化アモルファスシリコン(a-Si:H)を、既存手法で用いる強い爆発性/毒性を持つSiH4(モノシラン)ガスを使用せずに、実用的な製膜速度でシリコンウエハー上に形成することに成功したと発表した。
SHJ太陽電池は、理論効率である29%に迫る26.8%の発電効率を示すなど、次世代の高性能太陽電池として期待されている。SHJ太陽電池の高い効率は、a-Si:Hをシリコンウエハー表面のパッシベーション層(ウエハー表面でのキャリア再結合を抑制する層)として用いることに起因している。一方で、a-Si:H層の形成プロセス(プラズマCVD法、Cat-CVD法)では、強い爆発性/毒性を持つSiH4ガスを使用するため、太陽電池における主流となっているPERC(Passivated Emitter and Rear Cell)型の構造を持つ結晶シリコン太陽電池に比べて製造コストが高いことが課題となっている。
SHJ太陽電池は、理論効率である29%に迫る26.8%の発電効率を示すなど、次世代の高性能太陽電池として期待されている。SHJ太陽電池の高い効率は、a-Si:Hをシリコンウエハー表面のパッシベーション層(ウエハー表面でのキャリア再結合を抑制する層)として用いることに起因している。一方で、a-Si:H層の形成プロセス(プラズマCVD法、Cat-CVD法)では、強い爆発性/毒性を持つSiH4ガスを使用するため、太陽電池における主流となっているPERC(Passivated Emitter and Rear Cell)型の構造を持つ結晶シリコン太陽電池に比べて製造コストが高いことが課題となっている。
同研究では、ウエハー直上に存在するi-a-Si:H(アンドープa-Si:H)に着目し、シリコンウエハーの両面にi-a-Si:Hのみを形成した試料を用いてウエハー表面でのキャリア再結合抑制効果を評価した。
ウエハー表面でのキャリア再結合抑制効果の指標となる実効キャリアライフタイムは、厚さ42nmのi-a-Si:Hを用いた場合に10ミリ秒を超える値を示し、太陽電池を形成した場合の出力電圧の目安であるiVocの値は726mVと高い値を示した。また、実際の太陽電池で用いる5nmのi-a-Si:Hを用いた場合でもiVocは717mVと高い値を保ち、薄型シリコンウエハー(100ミクロン)に5nmのi-a-Si:Hを形成した試料におけるiVocは730mVであった。これらは、従来技術であるプラズマCVD法やCat-CVD法と比べても遜色のない結果だ。
Read full article
Read full article
Comment
コメントする